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1. INTRODUCTION

Acoustic echo ranging signals and acoustic communication signals that are received
in the ocean frequently are distorted by reverberation generated by the interaction of the
transmitted signal with the ocean bottom. Additionally, if the transmitter and receiver
platforms are moving, then the Doppler shifts in frequency, induced by the platform move-
ments, further complicate the reverberation effects on the received signal. This gives added
cause to consider reverberation to be an undesirable noise component. In the usual case of an
assumed known environment the reverberation statistics can be determined to enable the
transmitter and receiver to be designed to combat this noise.

The problem considered here is an arbitrary but narrow band signal that is traris-
mitted by one moving platform and received by another moving platform. The platforms
are assumed to have arbitrary transmit and receive beam patterns, respectively. The sound
speed structure is assumed to be spatially varying in a simple manner and the direct path
signal generally follows a bending ray path to the receiver. In addition to the direct path
signal, the receiver intercepts the reverberation generated by the interaction between the
transmitted signal and the ocean bottom. It is assumed that the random bottom has a
gaussian distribution. The time evolving spectrum of the field is determined, which re-
veals interesting frequency-spatial relations and provides useful estimates of the acoustic
field.

This development is restricted to the case of bottom scattering to avoid the mathe-
matical complexity imposed by a moving surface. However, it is possible that the bottom
reverberation results can be applied to the case of surface reverberation, with certain quali-
fications concerning Doppler spreading of frequencies caused by surface movement. The
effects of volume scattering are ignored also as this reverberation exhibits more compli-
cated frequency-spatial relations than boundary scattering. This is not a serious omission
when bottom reverberation is present, because volume reverberation usually is much weak-
er than bottom reverberation.

The analysis leading to these results appears in Chapter 2 where the developed
basic field expression represents the propagation and scattering mechanisms described
earlier. This development is based upon a generalization of the Kirchoff-Helmholtz inte-
gral equationl’2 in which the Green’s function kernels have been replaced by ray theory
kemels. The surface field in this integral is approximated by a ray-Born approximation,
i.e., the surface field is equated to the direct path ray field. The surface ficld derivative
is approximated by assuming local specular reflection with shading, which is a slight gen-
eralization of the Kirchoff approximation. This development is patterned after that of
Eckart3, who used the conventional Helmholtz integral equation and approximated the
boundary conditions via the Born and Kirchoff approximations. Eckart’s boundary assump-
tions were later extended by Horton and Muir4 and Horton, Mitchell and Barnard3 to
include a shading function. Additionally, his method of approximating the integral was
later extended by Gulin.6

In each of these earlier developments, as well as in more recent ones, the primary
intcrest has been centered on the case of specular reflection and its attendant reverbera-
tion, i.e., the scattered return from the first few Freznel zones. An exposition of much
of this earlier work is given in Beckmann and Spizzichino7 and a more recent survey is




given by Fortuin.8 The specular problem is discussed here, as well as the reverberation
that follows the specular component, i.e., from the higher order Freznel zones. While
this component of reverberation has not been thoroughly researched one of the early
investigations of this reverberation was conducted by Halley.galo:ll

In Chapter 3 the mean and covariance function of both components of rever-
beration are found. These results give the statistical properties of the time dependent
field that are needed for the determination in Chapter 4 of the time evolving ‘‘gener-
alized instantaneous power spectrum” (GIPS)I‘2 and also of the spectral variance. The
GIPS of the reverberation from the higher order Freznel zones reveals interesting fre-
quency-spatial relations and represents a generalization of Halley’s earlier work.

2. SCATTERING BY THE OCEAN BOTTOM

THE TRANSMITTED SIGNAL

A transmitter and receiver are assumed to be traveling, respectively, at arbitrary
but constant velocities vy and vg, as indicated in figure 1. The transmitter emits a
signal

s(t) = m(t) exp(-i wqt) (1a)

m =+ f: M(w) exp(- wt) dew (1b)

that propagates to the receiver along the direct ray path and also along ray paths that
scatter from the bottom. The emitted signal is Doppler shifted by the motion of the
transmitter and amplitude weighted by the transmitter beam pattern and the direct path
signal, as well as the signal that scatters from the bottom, retains this information. The
received signal is Doppler shifted further by the motion of the receiver and weighted by
the receiver beam. An expression is developed for the received signal in which the effect
of each of these mechanisms is apparent. For mathematical convenience the case of scat-
tering by the moving surface is ignored; i.e., only the case of scattering by a stationary
bottom is considered. However, the bottom is assumed to be acoustically penetrable with
scattering coefficient R(EP) and it is assumed that for the appropriate scattering coefficient
the development approximately applies to the case of surface scattering.

THE HARMONIC FIELD

The field in the medium due to a harmonic transmission at frequency w is given
byl,2

el = -};,,{ [av tgw® + 5B vE D]
4

+ fs ds 0+ [$,(F) V-V ¢0,(B)] }x(E,?) (2a)
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Figure 1. Ray geometry from transmitter to receiver.




xED = AE.Dexp ik ¢(E1) (2b)

£
wED = [, dsn (2¢)
T
AGH = o l fg 2 4/ 2 2
K 2 exp - |5 . ds V- ¢/n+1nlr —rl) } (2d)
y&n = g? AE D/AE D (2e)

(13 .)’

where denotes a vector dot product, the time dependence in equation 2a, exp(-i wt), is
omitted for convenience and the ray kemel is defined in equations 2b, ¢ and d. The quantity
n(= cg/c) is the index of refraction, where c is the sound speed and c( is an arbitrary
reference sound speed, the quantity k(= w/co) is the wave number the integrals in equation
2c and equation 2b are over ray paths between the points rand .E

For the case of a constant sound speed structure, the phase expression in equation 2c
becomes the range, r, the amplitude expression in equation 2b becomes the reciprocal of range,
I/r, and the function v vanishes, which implies that there is no volume scattering. It is
assumed that the sound speed is varying sufficiently slowly so the volume scattering term
in equation 2a can be ignored. This formalism i is strictly valid only for the case of a nonmov-
ing transmitter and receiver but for velocities v that are small compared to the sound
speed, the associated error terms are of the order lvl/c and can be ignored.

Initially the transmission is considered from one element of the transmitter ar-
ray to one element of the receiver array. The transmitter source term is given by

gs(g) = 47 G(E- ET) rTw(gT) (3)

where 6(°) denotes the deita function and F—rw(f-r) denotes the frequency dependent com-
plex transmitter transfer function. The field at an element of the receiver array due to
this transmission is

¢w(gR’ gT) = rTw(gT) X(gT, gR)
[ds n - [¢w(§P' g’[‘) V-V ¢w(gp, ET)]
x(Ep. ER) @)

where the transmitter, receiver and surface scattering points are denoted explicitly by ET,
ER and EP This is an integral equation which can be evaluated to first order by a ray-
Born approximation and a modified Kirchoff approximation.




Boundary Conditions

The field on the scattering surface can be expressed as the sum of the incident
and reflected fields

supip = odpEp +of Gplp - (5)

The incident field is approximated by the shadowed direct path signal while the reflected
field is approximated by the associated specular reflection.

The amplitude and phase of the specular component will be the same as the inci-
dent component except as they are modified by the reflection process and the total field
on the surface can be written

ouEpfp = TMEpED Iy Ep xEpEp)1 + REp)) (6)

where 1T is the shadowing function which is unity on the ensonified areas and zero on the
shadowed areas.
Similarly, the field gradient term is given by

i VoGl = 1 - Visidp.Ep + o'Ep.Ep]
= ik NEpEp) Mp ) xEpEp)
x 1 - [VYiEp.Ep) + R(Ep) VYIEp.Ep) ] (7)

where the amplitude gradient terms are much less than the phase gradient terms and are
ignored. Since the phase expression in equation 2c is symmetrical, the gradient of the phase
of the incident component is approximated from the direct path phase

Vyiplp) = VvEnip
= V(Epkp)
= n(fp)eip.p)

where’t\gp,g-r)‘is the unit vector that is directed along the ray from the transmitter to
the surface at £p.

The gradient of the phase of the specular component immediately above the scat-
tering plane can be found from the condition that its vector wave number has the same
projection in the scattering surface as the incident component

(8)

nx (Vyl+Vyh = 0 - 9)
Since at the scattering surface the vector wave numbers have the same magnitude

| vl = [ (10)




their projections perpendicular to the scattering surface are also the same

n-(Vyl+Vyn = 0. (1n

With this result the field gradient expression becomes

i VéEp.ép= ik TéEpfp Iry,Ep xEr.ép)
x 1 - Bp.Ep (1-R(Ep)) (12)

where the index of refraction is ignored since it is of the order of unity.
The gradient of the ray kemel is similarly given by

n -V x@Epp = ik x@Epfp 1 -eEpiR) (13)
where ’ngP,ER) is the unit vector that is directed along the ray from the receiver to the

surface at E
Collectmg terms the expression for the field at the receiver element becomes

¢W(§R’§T) = rTw(gT) X(ET,ER)
[ds uEpdp) tpo,Ep xErdp x@pip)

X1 - [@(Ep.Eg)(1+R(Ep)) - €Ep.E)(1-R(Ep)) ]
(14)

By Huygen’s principle (see appendix A) the surface integral over just the direct path term
vanishes, i.e., the integral vanishes for R = 0, and this expression is simplified to the form

s Erbp = Il xErép)
+3k [ a5 pdp Trodp x@rdp x@plp) REp)

x 1 - [QEp.Eg) + Qlp.dp | (15)

which is a first order approximation of the field at the receiver elements at ER due to a
harmonic transmission from the transmitter element at ET

Beamformed Signals

The beamformed receiver output caused by the beamformed harmonic signal trans-
mission can be obtained by summing over the transmitter and receiver apertures. For this




calculation it is assumed that the ranges between the arrays and the bottom are large com-
pared to both the array sizes and bottom elevations and approximations are obtained for
the phases and amplitudes.

The phase of the direct path signal is expressed

Lo T
vEpiR) = /s dii - né(iifg) (16)
R

where U denotes an arbitrary path between ER and ET' This path is chosen via the ray
path to the acoustic center of the transmitter, ;T'

-

-+ ET - ALS P - -
viErdp) = fr ail - né(iEg) + viipdg) - an
T

Since the integrand is nearly constant for ranges that are large compared to the array sizes,
the phase approximated is -

VERER) = épR - Gp-Tp) + ¥(ndR) (18)
where eTR = €(FT,?R) = ’e\('r'T,gR)) is the unit transmitter polar vector directed along the

ray from the receiver acoustic center to the transmitter acoustic center and n = 1. Identi-
cal arugments yield the expression

VERED = €jr - ErTR) + V(ORI (19)
where 6RT is the unit receiver polar vector directed along the ray from the transmitter

acoustic center to the receiver acoustic center. By symmetry of the phase function
equation 18 becomes

V(EpER) = erg * (Bp-tp) + epy - GRTR) + VGETIR) (20)
The amplitude of the direct path signal is approximated
A(ET‘ER) = A(;T';R) @n

since the field expression is relatively insensitive to amplitude variations.
Similarly, for the phase and amplitude expressions within the integral




YErép) = €rp + Br-tp) +Bpy * K n(ip) + Y(Ip.ip) (22a)

A(Er.Ep) = AGT.Tp) (22b)
\P(gp,gR) =2pR ° k n(;p) +2Rp (gR';R) + \P(;p,?R) (22¢)
AEp.fR) = A(pIR) (22d)

where n denotes the surface elevation, ;P denotes the projection of the surface point EP
onto the plane of the mean surface and the vectors®€),p and /e\Pu are the unit polar vectors
at T, and Tp, respectively, directed along the rays from rp and 1,,.

Collecting the linearized phase expression and substituting into equation 15, along

with the variable change
ds = dxdy/n-k (23a)

n = (z)/ V@) |, (23b)

multiplying the complex receiver transfer function I‘Rw(ER) and integrating over the
apertures

0(RIT) = P TR) P ERT) AGT.IR) expli k Y(Fp.iR))
+3 [ axdy NGpip) AGr.ip) Alipig) Riip)
y y W(rpry) Alrpotp) Alrp,rg) Rirp

x exp(i k[Y(rp.Tp) + ¥(ip,rR)

Po(eTy) = f dfp Ipy,p) expli k &y, * Grip) (25a)
P(®Ry) = f dfR Tre,(ER) expi k égy, - (BR-TR)) (25b)

where the functions II and R were redefined to be functions of the mean plane coordinate
and the function Il is approximated as a function of the transmitter acoustic center. The

10




functions pw(-éTu) and pw('éRu) represent the complex beam patterns of the trans-
mitter and receiver beams, respectively, and the beam *“look” direction is defined to be
opposed to the unit vector arguments, i.e., back along the rays. For the arguments aI'R
and ERT the complex beam weighting is given in the direction of the ray that propagates
between the transmitter and receiver. The beam patterns in the surface integral with
arguments ETP and ERP represent the cross sections of the complex beam patterns of
the transmitter and receiver that lie in the scattering surface.

THE PULSED FIELD

Given the above expression for the beamformed output due to a beamformed har-
monic transmission, the analogous expression for pulses is obtained by a Fourier trans-
formation, provided that the spatial length of the pulse is long compared to the array
dimensions and bottom elevations. The Fourier transform of the complex envelope of
the transmitted signal is denoted in equation 1b by M(w) and the Fourier transform of the

analytic signal is M(w-w(), where w( is the angular carrier frequency. The received sig-
nal is given by

$(rp.Ipot) = P(e1R) P(-ERT) AGT.TR)
X m(t-y(rp,rg)/cq)

X expl-i wo(t-Y(rp.rr)/c0)]
lk - - -+ - - -
+=2 [ axdy NGpip) AGyip) AGpiR) Riip)

X p(-1p) p(-Egp) V(z-n(rp)) * (€pr+épy,
X m(t-(Y(Fp.Ip) + Y(Tp.R))/co)
X expl-i woUt-(Y(ip.Tp) + Y(ip.ig))/co)
+1i kg n(;p) K - (eprtépr) | - (26)

In this Fourier transformation the beam patterns are assumed to be constant over the band
of the signal, the integral coefficient is approximated by kg(= wq/cg), which is valid for
narrow band signals, and the small order term in the complex envelope is ignored. This
expression represents the field in the medium in terms of a broad class of signals, beam
patterns, sound speed structures and bottoms for the “frozen” case and in the following
section the effects of platform movement are included.

11




PLATFORM MOVEMENT

For the case of a moving transmitter and receiver the platform position vectors,
?T(t) and ?R(t), are assumed to be functions of time while the motion of the medium is
ignored for simplicity. The surface motion has the effect of Doppler broadening of
spectral components while the internal motions of the mediums have the effect of Doy~
pler broadening and biasing of spectral components. Both effects are assumed to be
negligible compared to the Doppler shifts due to the transmitter and receiver motions.
For the moving transmitter and receiver, the direct path phase is given by

. T I
YER(T)IR(D) = f* du - n 8(iTR(1)) (27a)
TR(T)
T = t = Y(rp(r)Ig(1))/co (27b)

where 7 is the time at which the received signal was transmitted. If the travel distance
of the platforms is short compared to the range between platforms during the interval
of a pulse it can be linearized

5 - ;T(T) - AL - -»
Y(rp(r)gr() = |, du - n e(u,rg(t)) + Y(rp(0) ,rr(1))
TT(O)
= 8(rp(0),rR() * vpr + Y(rp(0) fR(D) - (28a)

The second term is found from the symmetrical relation

RO L L ) )
f_' du - n e(u,rp(0)) + Y(rp(tp) ,r1(0)

Y(rR(1) ,17(0))

&(rr(tp) Fp(0)) - VR(t-tp) + Y(rR(tp) rp(0))
(28b)

tp Y(rp(0) TR(tp))/co (28¢)

where tpy is the arrival time via the direct path of the transmission at 7=0. Terms col-
lected are

12




W(;T(T) ,;R(t)) 8‘1“R ‘ C'TT + ERT ¢ \-;R(t-tD)

+ Y(r(0) TR(tp)) (29a)
B I-ERT : ;R/CO (29b)
T (t—tD) 1+8TR : ;T/CO

where the unit polar vectors e/r (= e(rT(O) rR(tD)) = e(rT(O) rR(t))) and
eRT(- e(rR(tD) rT(O)) are generalized to denote the ray directions at the transmitter
position when the transmission starts and on the receiver position when the reception begins,
respectively. This occurs when the receiver is at its position of initial reception or the
transmitter at its position of initial transmission.

Similarly, for the phase in the scattering integral

Y(Ep(r) 1p) + Y(Ipig(t)

-

r(7) . p = >
= /_: 1 du -n 8(u,rP) + f_’ . du *n é(u,rR,(t)) (30a)
rP rR(t)
T = t- [Yrp(r),1p) + Y(Iprr(t)) 1 /cg (30b)

where 7 is the time at which the signal received via ;P was transmitted. These expressions
can be approximated by

Y(rp(r) ip) + Y(rp.iR())

= 31-11 s ;TT + gRP s ;R(t-tPR) + \[l(-l:T(O) ,;P) + W(;P’;R(‘PR))

(31a)
1€pp - v [co

T = (t-tpRr) l: ARP _,R } (31b)
]+e/rP - VT/CO

tpr = (W(r0),1p) + Y(Tp,rp(tpr)) 1 /co - (31c)

where the subscript R on the time delay, tpg, emphasizes that the receiver position at the
time of reception is different for different scattering points. A first order expansion about
the receiver position at the onset of the bottom return, rR(tP) i.c., from the specular
point, gives

13




Y(ipTR(tpr)) = V(p.IR(tp)) + ERp * YR(tpR-tp) (31d)

where the unit vector éRp(= é‘(-r'(tp)_.,'r'P) ) is defined to be the unit vector at the receiver
that is directed along the ray from rp to the receiver location at the onset of the bottom
return. Substituting in equation 31 gives

Y(rp(r) Ip) + Y(Ip,TR(1))
= &pp ' VIT + eRp " VR(t-tp)

+ Y(rp(0) ,Tp) + Y(Tp.IR(tp)) (32a)

|-1—€RP : VR/CO (32b)

= (t-t -
! ( P) |.1+8TP . VT/CO

tp = [WEO), Tp) + Y(Tp.ig(tp) ) 1 / ¢ (32¢)

where the two receiver displacement terms combine to give a total displacement.
The amplitude expressions are approximated

AGp(1) IR(D) = AGO0) fR(tp)) (33a)

A(p(1) Tp) AGp.IR(D)) = A((0).Tp) A(Tp.TR(tp)) (33b)

since the direct path term and scattering integral are relatively insensitive to small amplitude
variations.

Collecting results equation 26 becomes
SR, ITst) = P(€TR) P(€RT) AGT.IR)
x m(t-tp) expl-i wq a'D(t—tD)]
+20 [ axdy NGpip) AGpip) AGpig) Rlp)
m
x p(e1p) P(€gp) V(zn(rp)) - (EprtépR)

x m(t-tp) exp[-i wg ap(t-tp) + ikg n(rplvy]  (34a)

14




where

ap = [1 - (&pp * V1 *+ €gp * VR)/c0) (34c)
vz' =K - (6PT + GPR) (34d)

and the small order terms in the complex envelope are ignored. These equations very nearly
represent the final field equations but they can be simplified further

THE RECEIVED SIGNAL

In the preceding calculations it was convenient to consider the unit ray vectors to
be directed away from their corresponding source points. In the following it will be con-
venient to reverse their direction, i.e., to negate all unit ray vectors. Then, whereas the
vector éu was defined to be the vector at r; directed away from ; along their adjoining
ray, i.c., along the ray that appropnately leads or follows the platform movement, it is
now deﬁned to be the vector at ru directed toward r along their adjoining ray, i.e., along
the ray that approprately leads or follows the platform movement.

The amplitude expressions were retained in their general functional form through-
out the preceding calculations but for the following they will be approximated by the
spherical spreading law

AGT.IR) = Ur (35a)
AGr.Ip) AGpTR) = lrprg (35b)

where r is the transmitter-receiver range and r and rg are the distances between the trans-
mitter and receiver and the mean scattering plane, respectively.
With the variable change t » t+t[) equation 34 becomes

(1) = TIP(ETR) p(ER) m(t) exp(-i wq ap t)

k
+-2 [ X4y 11y RGEp) perp) PERp)
TR

XV (zn(tp)) - Epr*epRr)
X m(t-7p) exp[-i wq ap(t-7 p) -ikq n(?p}uz] (36a)

ap = [1 + @R V1 *ERT * VR)/cg) (36b)

15




ap = [1+@pg " vy *+erp " VR)/cg] (36¢)

v, =K-@Er*epp (36d)
rp = tp-tp (36¢)
pery = | dfp Tro@p expt-i kg épy - Grip) (360)
PRy = iR TRe@R) expli kg egy - BrTR)) (368)

which are our principle field equations.

The functions II, R and n are assumed to be independent random variables. Their
distributions are unknown but by the central limit theorem, the integral term in equation
36a has approximately a Gaussian distribution. Consequently, the total field is a finite
duration narrow band signal, i.e., the direct path signal, in a nonstationary Gaussian ran-
dom signal. The field is completely defined statistically by its mean value and correlation
function and the Fourier transform of its correlation function gives the GIPS of the pro-
cess. These functions are calculated in Chapters 3 and 4.

3. THE ACOUSTIC FIELD STATISTICS
THE MEAN FIELD

The mean value of the field is the sum of the direct path term and the mean of the
bottom scattering term

SKY T TSR 2 (37a)
¢ = : P(ETR) PERT) m(t) exp(-i wq apt) (37b

k = = =
o> = 2 f %(ll(rp,rT)><R(rp)>

4mi
X p(ep) P(Egp) v, m(t-7 p)

X exp[-i wq “P(t"rP) ] Q(ko v,) (37¢)

where the mean value of the bottom height is zero and the characteristic function is de-
fined

16




Qkg v,) = <expl-i kg7 v,1> . (38)

If the bottom elevations satisfy a Gaussian distribution

p(m) = (2ah2)~1/2 exp(-n2/2h2) (39a)

hl= <y2> (39b)
then

Qkg #,) = explg(kg h 1)) (40)

where h is the rms bottom height.

At any time t the contributions to the reflected signal come from the ensonified
portions of the bottom specified by

0<(t-rp <T (41a)
Tp = tp-tp (41b)
tp = [Y(rp(0),ip) + Y(Tp.Ig(tp)) 1 /cq (41c)
tp = Y@Ep(0), TRitp) ey - (41d)

The term tp represents the propagation time to the intersection of an ellipsoid-like surface,
with the transmitter and receiver at its focii, and the mean scattering plane, while the term
tp represents the dircct path propagation time between the transmitter and receiver.

The onset of the direct path signal occurs at the time

tO =0 - (42a)

Denoting the specular point in the mean plane ;SP the condition in equation 41a shows
that the onset of the specular scattering occurs at the time

tl =Tgp (42b)

and terminates at the time

ty =7gp+T - (420)
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During the time interval t} < t < t, the reflected signal comes from a region within an
ellipse-like boundary centered about the specular point. For the times t > t, the re-
ceived signal comes from a region confined between two ellipse-like boundaries centered
about the specular point. Denoting the vertlcal prOJectxons of the transmitter and re-
ceiver positions onto the mean plane by rTP and rRP’ the outer ellipse-like boundary
passes under the transmitter and receiver at the respective times 7p and r gp, while

the inner ellipse-like boundary passes under the transmitter and receiver at the respec-
time times (7p * T) and (rgp + T). The average times of passage are defined as

t

(rpp + TRpP)/2 (42d)

ty = (pptTRrp)/2+T - (42e)
The ordering of these events is dependent upon the pulse length, but for signals that are
short compared to the range between the platforms, say, the events are ordered

tg<t) <ty <t] <ty - (42f)

During the time interval t; <t < t, the reflected signal is denoted specular scattering and
it comes exclusively from the region between the transmitter and receiver, i.e., the “‘in-
terior” region. For wave lengths that are short compared to the ensonified region, the
exponential function in equation 37¢ oscillates through a number of “lowest order
Freznel zones™ as Tp varies over the interior region. During the time interval t») St<oo
the reflected signal is denoted reverberant scattering and it comes exclusively from the
complimentary “‘exterior’” region which contains the higher order Freznel zones.

Over the interior region, the radial vectors ETP and 6RP are approximately con-
stant, which implies that the range of Doppler shifts is small and the integrand is approx-
imately constant. Over the exterior region, the radial vectors range over their maximum
domain of 27 steradians and, for the case of moving platforms and nonconstant beam
patterns, the range of Doppler shifts is maximized and the integrand exhibits its maxi-
mum variations. In the following it is convenient to consider just the cases of specular
and reverberant scattering for the short pulse case and infer more complicated cases from
these results.

Specular Scattering

Specular scattering is largely from a region around the specular point ;SP and the
specular scattering integral is approximated in equation 37¢
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ko<IIgp><Rgp >
4mi rrgp TRSP

<o > = p(éygp) P(ERgp) m(t-Tgp)

1
X fdedyP v, exp[- 3 (v, ko 11)2]
X exp[-i wq agp(t -7p) | (43)

where the functions extracted from the integral are slowly varying in the interior region
and are approximated by their values at the specular point. The remaining integral is
approximated by integrating a first order expansion of the exponential function over the
lowest order Freznel zones.

The time delay between the transmitter and receiver via the scattering point ;P
1S
tp = [YGE0), Tp) + Y(rprg(tp) )] / ¢ (44)

where rR(tp) denotes the receiver position at the onset of receptxon of the scattered sig-
nal. This expression can be expanded about the specular point rSP by

-

?T(O) A, - rP ~n, > -+ .
tp = ﬁ n e(u,rp) du + ﬁ n c(u,rR(tp)) du Ieg
I'P rR(tP)
Xp N N yp . N . )
= -f (ePT+ePR)-idx-f, (€pt + epr) "1 dy | /cg
Xgp Ygp
+ [W(rp(0) Tgp) + W(TgpTr(tp)) 1 /cq (45)

where GP[‘ and éPR are the unit vectors at the scattering point that are directed along the
rays to the transmitter position when the transmission starts and the receiver position when
the reception begins, respectively.

First order expansions of the vector products can be developed from figure 2

At the specular point

(ESPT + éSPR) -1 = -cos0 + cosf
= 0 (46a)

19




o
3?

N\
“SPT

Figure 2. Ray vectors near specular point.
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cosw/2 + cosm/2

0—-)
]

(égpT + €gpR) °
=0 (46b)

i
]

(Espr * &gpR) - K = cos(m/2-0) + cos(n/2-0)

2 sin@ (46¢)

where 0 is the grazing angle. Perturbing the reflection point to ;P’ which is assumed to
be a small displacement compared to the range, then the first order expansions

@y +8pR) * T = - cos(0 + ep,) + cos(0 + ep,)
= sinf (eTx - eRx)
= - (xp=xgp) sin0(2/R) (46d)
AN =
@pr +’éPR) -7 = cos(n/2 + eTy) + cos(m/2 + eRy)

= ey teRy)

- (Yp - Ysp) (2/R) (46e)

(@I’T +’e‘pR) -k = cos(n/2-8 + eTZ) + cos(w/2-0 + eRz)

2 sinf (46f)
where

R = 2 rrgprrsp/ (rrsp * TRsp) ° (46g)

The bounds on the incremental angles are denoted by double subscripts, e.g., €Tx is the
incremental angle between the ray to the transmitter and the x-axis

Substituting these expansions about the specular points into equation 43, the inte-
gral factor becomes

I = V,SpP exp[-% (v,sp kO h)2] exp[-i w asp(t-'r SP)]
k
X fdedyp exp[i—%’ (sinZO(XP—xSP)z + (yp-ysp)z)]
(47)
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With the vaniable changes

koo k
;= 1/—% sinfl(xp-xgp) ; t2 ="/ ogsp (yp - ygp) (48ab)

this integral can be cast into the form of a product of Freznel integrals

I = VZSP exp[—%(vzsp kO h)z] exp [-i wo asp(t-‘rsp) ]

— 8 .2 , B
X(koaspsin9> fdtl exp(i ) f dty exp(i t)

im v,5p R I 5 ,
Kgegpsind exp [-5 (v,gp kg 7] exp [-i wg agp(t-tgp) ] .(49)

Substituting back into the specular scattering integral, then

1
<Osr> = <llgp><Rgp> expl-5(w,sp kg h)?]

X p(étgp) p(eggp) m(t - Tgp)

X exp[-i wq agp(t-Tgp) 1 /(rpgp * rRgp) (50a)
agp = [l +@pgp - by +Ppgp * ng) / ol (50b)
v,5p = 2 sinf - (50¢)

This is a principal result showing that the mean reflection from the near surface is a
specular reflected signal attenuated by shading absorption and surface roughness. The
starting and stopping times of this signal are given in equation 42b,c.

Reverberant Scattering

For the case of reverberant scattering it is convenient to represent the signal’s
complex envelope by the integral

T
m(t - 7p) = ELi"(‘) dt' m(t') p(t-rp-t') (51a)
0
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pet") 1/e 0<t <e
= 0 - elsewhere (51b)
Substituting into the expression for the mean value of the reflected field in equation 37c,

.k T ) 2r dprdo
- LimZ20 PN L N
<PR>= €0 4ni fo a mey foo o fo ETE

X <I(p.ip><R(ip) > v expl-3(v, ko W71
X pe(t-'Tlrt' ) exp[-i w( O’p(t-‘rp) ] (52)

where p, 0T are the cylindrical coordinates in the mean scattering plane about the trans-
mifter.

The only contribution to the inner integral at a time t satisfying equation 52
comes from an cllipse-like band defined by the condition

0< (t—rp—t') <€ - (53)

The radial coordinate integration over this band can be easily performed. For a fixed time
t, angular coordinate 0 and parameter t' the upper and lower radial coordinate limits are
of the form

Pra = AT O, t") (54a)

pTL = py(t, O, t" +€) - (54b)

Expanding the lower limit in a Taylor series about the parameter t’

_ do
pT,L - pT,U * (dtl ) E(t,OT,t') (54¢)

and the integral in equation 52 becomes
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— kO T ' 1 - P 2 2
KIRD> T 75 ; dt' m(t') ; dop rTr1+<n(rp,r-r)> <R(rp)>

X p(erp) peRp) ¥, exp[-—é(vz kg h)?]

X EXP('i (AJO aPt. ) (-de/dt' )](t,OT,t' ) (55)

where the integrand is evaluated at the point on the ellipsc-like band (t, 0, t’). Since
the quantities in brackets are relatively insensitive to variations in t’ and become inde-
pendent of t'  for t + oo, the integrals can be approximately uncoupled

2r

_ ko
<OR> T 4o

dop |[PL_\<n(rp.ip) > <R(1p)>
0 ITrp

X p@[p) PRRP) ¥, expl-5 (v, kg M?]

T
X (-d pp/dt") dt' m(t") exp(-iwpapt)
(t,61) |O
(56)
Since the complex envelope is bandlimited below the frequency wqp
9p = 0 (57

which shows that the signal scattered from the exterior region is incoherent and has no
specular component.

THE CORRELATION FUNCTION
The correlation function for the total field is given by
<ot+7) ¢ * (D> = gg(t+1) P *(1) + dy(t+7) < ¢ *(1)>

+ o) <P+ > + <L (t+7) $1(DD>
(58)
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where the mean was computed in the mean field section. The correlation function of the
reflected field is given from equation 36a by

Clt+r ) = LBy(t+7) $1%(0 >

dxP dyP dxP dyP

' CH(; _;l ’; )
PR FT TR E T

X CR(?p-?;i) piérp) P(Rp) P*(ep) P*(egp!)

X Cg (FP-?P') m(t+ 7-7p) m*(t-7'p)

X exp[-i wg ap(t+T-7p)+ i wy cx'P(t+r-T'p)] (59a)
Cry(prp.rp) = <N(rp,rp) H(rp,rp) > (59b)
Cr(pp) = <R(rp) R(p) (59¢)

Cg(ipip) = <IV(zn) * @pr#pR) | [V'(z-n ) - @pr+epp) ]

X exp[-i kg nv, +1ikg 7' v 1> (59d)

where homogeneous correlations are assumed. In this expression the correlation functions
Cpp. Cr and Cg are for the shading function, the reflection coefficient and the geometric
scattering coefficient, respectively, and the expectation operator separates due to the inde-
pendences of II, R and 5. Since the correlations vanish for |?p—?P’| >> 0 this integral
can be reduced to a single surface integral and evaluated for the cases of scattering from
the interior and exterior regions separately as in the preceding section.

The geometric scattering coefficient correlation function can be approximated,
where v, is much more slowly varying than g,

- =+,

Cg(rptp) = <[ @pr*pR) - (K - (- ko »,)-) exp(-i kg nv,) ]
X [@PTHePR) * (K - (-i kg v2)-7") expli kg v n') 1>
- { vt = v (i kg vl [@pr+pR) © V']
- v,(-i kg VZ)_l [(C\pT'*‘é\pR) ]
+ (i kg 7)1 (i kg vp)™! [ @pr*epR) -V IERPpTHEPR) * V]

X Qs(kq ¥y kg V4, Tp-Tp) (60)

25

\




where the function

Qy(kg v, kg vy, TpTp) = <Lexpl-i kgmw, +ikg nvy]1> (61)
is the joint characteristic function of the bottom elevations.

Assuming a jointly normal distribution for the surface the joint characteristic func-
tion becomes

Qxkg ¥, ko ¥y Tpip) = expl-5( (kg hw)? + (kg hwy)?
-2 (kg hw,)(kg wy) Co( g )] (62a)
C(ITpTp ) = <n(rp) n(ip)> /h? (62b)
Cp(0) = 1 (62c)
where an homogeneous isotropic bottom is assumed.

The above expression can be approximated by a first order expansion of the sur-
face correlation function

Col lTpip ) = [1- Iipipl/a®), lipfy 1 <a

= 0 lrprpl>a , . (63)

i.e., the surface correlation vanishes within the distance a where a is the surface correlation
distance. Since the correlation distance is short compared to the ranges from which energy
is scattered, the angles to the two points ;P and Fi) can be equated.

Collecting results then

-+ =

Celpip) = [ + 20 kg vl [ GprtépR) -v]
- (kg v5)"% [ @prtepRr) - V12
X exp [- (kg hw,)? |Tp-1p 12/2%] (64)
where V' - -, This expression can be readily evaluated with the substitution

Tpip 12 = (xp-xp)?+ (yp-vp)? (65)




and the result is
CS(FP-r'P) = {[v% i 4(h/a)2 v% kO[ (xp-xi,) v + (yP'yi’) uy]
- 4(h/a)* v kG L (xpxplvy + (yprypivy )2
+ 20/a)2 0202

X expl(kg h »,/a)% ((xp-xp)? + (ypyp)) ] (66a)

vy = @pr+opR) ‘T (66b)
by = ©pr + &pp) T (66¢)

which is approximately correct for all Xps Yp» Xi), y’P.
Collecting results the correlation function of the reflected field is given by

ko2
Ct+7,t) = (4”)2ffff

5 o) ,
X lp(@TP) | < |p(’e\RP) [“m(t+ 7-7p) m*(t-7p)

dxp dyp dxi, dyp

—— CalipTpip) CRrlpTp)
'TT/RITTR

X exp [i wq ap (7 p-7 i)-T) ]
2 = 2 2 ' p
X {Vz +i 4(h/a)"uZ kO [(XP'XP)”X =+ (yP-yp)uy]
4 2,2 1 7 2
- 4(h/a)" vy kol (xpxplvy + (yp-yplv |
+ 2/a)? (2 + ”5’}

X expl(kg hw,/a)? ((xp-xp)? + (yp-yp)®) ]
(67)

The integration over the primed coordinates can be performed after expanding 'r'P about

-
l From equation 36e then

Tp-Tp=tp-1p (68a)
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and analogous to the expansion in equation 45 is obtained

P Yp .
tp-tp' = / (épr+é‘PR) ’? dx + f (ePT+6PR) -l, dy /CO
Xp Yp

[
X

(68b)

where €py and €pp are the unit vectors at the scattering point ;P that are directed along
the rays to the transmitter and receiver, respectively.

With reference to figure 3 the expansions for the direction cosines of the rays
about the point rp are

@pr +€pR) ° i= cosfy +.cosfpy (69a)
@ +€pR) "7 = cosdyy + costgy (69b)
@py +8pR) * k = coshy, + cosdp, (69¢)

(@ﬁr +@p'R) T = cos(fy t eTx) + cos(0py * €Ryx)

= Gpptepp) T

) (sinz 01y + sin? Orx ) ("13"‘1") (69d)
T 'R

(é’pT +’e“PR) *j cos(fy + exy) + cos(Ry + €Ry)

= Gpr+op) T

) 2
B sin BTy b sin oRy (yif'yl'))
I'T l'R

@y +pp) * k cos(fp ter,) + cos(Op,*eR,)

@pr +pg) * K (691)

where the angular subscripts are defined as in equation 46.
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and [
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Figure 3. Ray vectors at the points




Substituting the direction cosine expansions into the time delay expressions and
integrating then

p - 'r'P = (x'P -xplv,/cq

2 0
_(sin 01x e sin GRx & )2/2(:
I TR P~ 7P 0

% (y’p - yP)Vy/CO

9] 2
sin“ 0 sin“ 6 _
- ( L1 Ry) (y'p- }’p)2/2 o (70)
I'T l’R
which is the required expansion.

The correlation function becomes

C(t+r,t) =

dxp d
[f 5 yP Iperp) 1% In(egp) I*
(41r)" rR

X m(t+7-7p) m*(t-7 p) exp(-i wq ap 7)
X [[deyde, Cpéip) Cr@®
X [V% -1 4(h/a)2 v‘; kolexvx +ev,]
- 4m/a)* v2 Kdle v, + egv1?

) B
+ 2(h/a)~ (v; + v;,)}

X exp [ - (kg hVZ/a)?' (ei + ez)]

) ) 2
sin< @ sin“ 0 €
X exp [—1 kg ap (e v +( Tx + Rx) L

|

2 - 2

sin< 0 sin“ 0 2

+e,v, + ( Ty+ Ry)e)')](ﬂa)
Yy T
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where

- = - A A3

Tpfp = € = €I+ € (71b)
If it is assumed that the correlation functions of the shading function and reflection co-

efficient are approximately constant over the correlation distance of the medium, the inner
integrals become elementary integrals and the correlation integral becomes

_ CR(O) a 2 dXP dyp ) R 2 -

X m(t+7 -7p) m*(t-7p) exp (-i wq %p 7)

-2 -2, 2 272 2.2
X v [u tv, (vx+Vy) —2(Vx+Vy)]

X expl- (/2 ) ()] - (72)

As for the case of the mean field calculation this integral is evaluated for the cases of
scattering from the interior and exterior regions separately.

Specular Scattering Correlation

For the case of near field scattering the energy is received largely from the spec-
ular point, for which », = vy = 0, and the correlation function is approximated

A Cp(0ipgp) CR(O)  [a)\2
Ot = — R =| Iorsp) I* InCpsp) 12
[6Itp FRsp h
X m(t+r-7 SP) m*(t-71 SP) exp (- wq ogp T) (73a)

where all functions in the integrand are approximately constant over the interior region
and the quantity A is the area of the ensonified surface. A crude approximation of the
area A, which is roughly the area of the interior region and that gives the correct range
dependence, is given by

2 2
T r
: . TSP RSP2 _ S
(rrsp + TRsp)
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With this expression equation 73a becomes

Cr(0,1 Cp(0
Cttr,t) = 1 ‘rsp) CRO) (a

N
=17 Ip@rep) 12 1p@gep) |2
16(rrsp + TRsp)” h) o o

X m(H*r-'rSP) m*(t-rrSP) exp (i wg agp T) (73¢)
which is easily obtained and shows the functional form of the correlation.
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